

Harunur Rashid Lonnie Thompson Leonid Polyak

Byrd Polar Research Center The Ohio State University 1090 Carmack Road Columbus, OHIO

Executive Summary

Nearly 100 scientists working in disciplines ranging from atmospheric and marine chemistry, paleoclimatology, paleoceanography, paleoclimate model-data comparison to archaeology attended a weeklong American Geophysical Union Chapman Conference on Abrupt Climate Change. The conference was held at the Byrd Polar Research Center of the Ohio State University, Columbus, Ohio, from 15-19 June, 2009. The basic purpose of the conference was to understand the spatiotemporal extent of abrupt climate change and the forcings behind it. Most of the presenters demonstrated that, regardless of whether the paleo-records were from lakes, speleothems (cave formations), ice-cores, or marine sediments, abrupt climate change was a recurrent phenomenon at least during the last glacial-interglacial climate cycle (14.6-116 ka). Whether such recurrent events occurred during previous glacial cycles is not well documented due to the scarcity of very long paleo-records with the requisite spatial and temporal resolution. Participants noted that the number of paleo-records from the Southern Hemisphere (SH) irrespective of glacial cycles was very low and stressed the need to increase efforts to acquire more paleo-records from the SH.

Many important discoveries and well dated paleo-records were presented at the conference and will be published in an upcoming Geophysical Monograph. Several new areas of inquiry were discussed, including (1) the role of Southern Hemisphere local insolation in developing an independent chronostratigraphy circumventing the traditional method of deriving an age using orbital tuning and using the chronostratigraphy to correlate the Northern Hemisphere insolation with the glacial terminations, (2) phasing between the deep ocean and surface water warming (derived from benthic and planktonic foraminifers oxygen isotope (δ^{18} O) across the terminations, (3) indication of monsoon failure from atmospheric oxygen isotope (δ^{18} O_{atm}) and deep ocean temperature change in the atmosphere and phasing with the position of the westerlies, (5) dynamic proxies and models' response to freshwater forcing in assessing meridional overturning circulation strength, and (6) the role of the Antarctic intermediate water in distributing heat and transporting old carbon around the ocean.

Conference Objectives

The main objective of the Chapman conference on Abrupt Climate Change was to bring together a diverse group of researchers who deal with paleo-proxy records such as ice cores, corals, marine sediments, terrestrial archives (lakes and speleothems), and coupled ocean-atmosphere climate models to discuss recent advances in understanding the mechanisms of abrupt climate changes. Since the discovery of the Dansgaard-Oeschger (D/O) events in Greenland ice cores and their subsequent cousins in the marine sediments of the North Atlantic, search for these abrupt, millennial-scale events across the globe has been intensified. A good compilation of these abrupt climate events are given by Voelker et al. (2002) and Clement and Peterson (2008). Since then, the number of paleoclimatic records has increased with most Northern Hemisphere records showing teleconnections with the D/O cycles in Greenland. However, the evidence for the abrupt climate change from the Southern Hemisphere is not clear although there appears to be a one-to-one correlation of the new Eastern Droning Maud Land (EDML) records of Antarctica, recovered from a location facing the South Atlantic, with Greenland (EPICA, 2006).

Marine and terrestrial paleoclimate records from the Southern Hemisphere are sparse and do not have enough temporal resolution to characterize the relevant timescales of climate variability. The paleo-records from the northern tropics and subtropics mainly show concordant climate changes with those in the North Atlantic, while asynchronous and even anti-correlated phenomena are exhibited in records from the southern tropics and from the high latitudes of Southern Hemisphere. For example, the Indian and East Asian monsoon systems seem to correlate with the North Atlantic climate, whereas the South American monsoon records show anti-correlation to the Greenland records (Wang et al., 2006). Moreover, paleo-proxy records from the equatorial Pacific are characterized by a complex pattern of abrupt climate change that borrows elements from both the Northern and Southern Hemispheres end members, suggesting that the tropical Pacific may have played a significant role in mediating abrupt climate change between the hemispheres.

Three mechanisms have often been invoked to explain these abrupt climate changes: (a) freshwater forcing in which meltwater was injected from the circum-North Atlantic icesheets through icebergs-rafting which may have disrupted the meridional overturning circulation (MOC) by preventing the formation of North Atlantic Deep Water (NADW) in the Nordic seas; (b) Expansion of sea-ice extent in which the albedo effect through altering the local and global energy and thus insulating the ocean from the atmosphere by cutting off the heat and moisture supply; and (c) the tropical forcing which calls for a combinations of the orbital configuration, El Niño-Southern Oscillation (La Niña) and sea-surface temperature (SST) conditions.

A number of outstanding scientific questions regarding Abrupt Climate Change were discussed in the meeting which includes:

- Given the amount of attention focused on meltwater forcing in modulating the MOC from the circum-North Atlantic, the extent to what degree and with what level of confidence do paleo-proxies suggest a one-to-one relationship between the freshwater fluxes and the strength of the MOC, as well as the sources of meltwater pulses?
- Are kinematic and nutrient proxies for the strength of the MOC congruent across the Abrupt Climate Changes? How do these proxies differ between the climate mean state and transient periods?
- Do current general circulation models (GCMs) simulate abrupt strengthening and gradual weakening of thermohaline circulation (THC), consistent with the rapid warming and gradual cooling of D/O events? If not, what other factors need to be considered other than the THC?
- Is there robust evidence for sea-ice in the Atlantic Ocean during the last glacial cycle? How much has sea-ice extent fluctuated on millennial-time scales? How has the fluctuations influenced the surface salinity and thus the density and watermass stratification?
- With the exception of the tropical Atlantic marine record, most tropical paleorecords show a clear lack of D/O cooling. Does this indicate that the parts of the tropics respond differently due to ensuing changes in the hydrological cycle and temperature nested in the THC?
- Given the dramatic changes in Arctic sea-ice and hydrography, how did the Arctic freshwater budget affect the overturning circulation of the North Atlantic?

- Why does the Antarctic temperature show a more gradual and less pronounced warming and cooling compared to the D/O events in Greenland? Does this indicate a direct role for deep ocean circulation in ushering the abrupt climate changes?
- In light of the current concern about the instabilities of the West Antarctic and Greenland Ice Sheets how can the paleoceanographic records be used to decipher past ice-sheet dynamics?
- What is the link between sea-ice extent and ice-sheet dynamics? How does the ocean heat transport influence the dynamics of the ice-sheet margin? Is the coastal ice-shelf a slave to the ocean currents?
- Was there any relationship between the demise of past civilizations and climatic deterioration? What are the climate tipping points that have driven past civilizations to collapse or dismantle?

The meeting spent five days with the ice-breaker on Sunday, the June 14th, 2009. Each meeting day consisted of a morning and afternoon session, beginning with a keynote lecture, and then continuing with two sessions on each of the main focus areas (see below). In the Wednesday afternoon, most of the participants took part in the field trip (see below for details) which investigated the margin of the Laurentide Ice Sheet. The sessions were scheduled in a way where the both the paleo-data and data-model comparison modeling results were presented. The conference topics were divided into seven themes which are as follows (see http://bprc.osu.edu/~rashid/Chapman.ACC/ program.html for full program).

- 1. Polar climate variability;
- 2. High latitude atmosphere-ocean dynamics and the meridional overturning circulation;
- 3. Low to mid-latitude ocean-atmosphere dynamics (and coupled systems);
- 4. Abrupt climate forcing from CO₂;
- 5. Abrupt changes during the Holocene and their impact on civilizations;
- 6. Abrupt climate Change during glacial Terminations, and
- 7. Abrupt climate Change and the meridional overturning circulation.

Discussions

Late Holocene tropical climate variability:

It is clear that during the past 5 thousand years Earth experienced at least 2 global-scale abrupt climatic excursions, each of which was associated with devastating consequence to human life. At 5.2 and again at 4.2 ka, the climate experienced a profound change that persisted for at least three centuries. Each abrupt event dramatically changed human cultures and changed the course of human history. However, due to the lack of spatial coverage, it was not clear the mechanisms of such abrupt changes during warm periods (such as the Holocene – the last \sim 10,000 years). It was emphasized that these climate events occurred within the past 5 ka when the climatic boundary conditions were similar to today's (prior to the rise in anthropogenic greenhouse gases). These two events were spaced approximately 1000 years apart. The abrupt onset of these events was followed by changes to the hydrologic cycle which was nearly (excluding the Polar Regions) and sustained for multiple centuries. Dramatic examples were presented at the meeting.

The event at 5.2 ka is preserved in diverse paleoclimate records that include the oxygen isotope records from Kilimanjaro, methane records from Antarctica and Greenland, the Soreq Cave isotopic records and marine records of the onset of arid and hyperarid conditions in the Andaman Sea and Bay of Bengal and Saharan desert. Other evidence includes preserved trees standing hundreds of feet below the surface of Lake Tahoe, 5.2 ka plants emerging from the retreating margins of an Andes glacier, the recent emergence of Özti (the 5.2 ka old ice man) in the Eastern Alps. All these data point to a near global low to mid low latitude abrupt climate event that impacted civilizations on three different continents. There were likely several hundred million people on the planet that time. For example, the 4.2 ka climate event that lasted at least 300 years is revealed in numerous paleoclimate histories. It is associated with the only major dust event in the last 17 ka of the Huascarán ice core from northern Peru. Archeologically recorded droughts in the Euphrates and Tigris drainage basins are recorded in the Kilimanjaro ice cores and cores drilled in the Gulf of Oman, Andaman Sea and Bay of Bengal and lake records from the

Gharwal Himalayas. The impact of such a rapid and sustained drought event today with 7 billion people would be devastating.

It is clear that the paleoclimate community has uncovered information about Earth's natural climate behavior that is unprecedented in the instrumental record and is unappreciated by the broader climate science community. This information is highly relevant to the USCCSP. Given the growing concern that Earth may be experiencing another abrupt climate change today, these past episodes of abrupt climate change provide us an opportunity to study how the climate system enters an abrupt change by developing the necessary data that can be coupled with model experiments designed to answer why Earth has experienced such dramatic changes in the recent past.

Paleoceanography of the Indian Ocean

The under investigated ocean in the paleoceanographic studies is the Indian Ocean. Many meeting participants pointed out that the ocean drilling program has not been active in the Indian Ocean since 1989. Four drilling proposals 514-Droxler et al.; 552-France-Lanord et al.; 596-Clift et al., and 549-Lückge et al. are under review by the SSP panel of the IODP for a future Leg in the Northern Indian Ocean. For example, Clift et al. proposed to drill the Bay of Bengal deep-sea Fan to elucidate the erosion and uplift history of the Himalayas. However, none of the proposals deals with reconstruction of the outflow from the Ganges-Brahmaputra-Meghna-Irrawaddy rivers. Recent studies have shown that the Indian summer monsoon can be modulated by the millennial-scale climate variability, where both short-and longer-term paleoclimatic records are critical for understanding the history of hydrological cycle, which is important for nearly one-billion population of this region. In addition, the proposed sites are too far offshore to record freshwater outflow from rivers. Therefore it is recommended to double the effort: not only to extend the site survey for future drilling closer to the mouths of these rivers, but also to integrate the effort from many research groups such as the University of Bremen, LSCE (France), and the Ohio State University. It is worthy of note that India became a member of the IODP, and hence the IODP's efforts in the northern Indian Ocean would be highly appreciated.

The other important point discussed was to drill a few selected land-ocean transacts along the eastern African continental margin. This would enhance our understanding of the long-term changes in the east African climate and, thus evolution and dispersal of hominids. It was pointed out that Lake Challa may provide a longer time-scale terrestrial climate yet an equivalent climate records from the Indian Ocean is yet to be obtained.

Past climate of the Southern Ocean

It was agreed that paleo-records from the Southern Ocean are very sparse, especially from the southern sectors of the Pacific and Indian Oceans. The recent recovery of the centennial- to millennial-scale nearly a million years long climate records from the European Ice Core Activity in Antarctica (EPICA) should pave the way to search for equivalent climate records from the southern Oceans. Participants recognized that there are no coordinated activities to achieve such goals, and that focused efforts are needed.

Several participants stated their concerns about the post-cruise funding environments after the drilling activities. For example, the NSF has a program termed the Expedition Objectives Research to fund work on the collected drilling samples. However, as many participants stated, after repeated submissions of proposal to work on the collected samples, they were unsuccessful to secure funding. This situation worsened since 2005. Therefore, even though the scientific community should focus on drilling new, scientifically rewarding sites, the data gap might not improve unless the NSF takes a hard look at how to improve the funding of post-cruise activities.

Paleoclimate simulation and data/model comparison

Well respected and active members of the paleoclimate modeling community of abrupt climate change attended and presented at the meeting. Most of the modelers stressed the need to improve the data resolution as well as tighter age-constraint on the paleo-records. In addition, it was suggested to further explore "the meaning of proxies", resolve the leads and lags in important paleo-records and provide a bench-mark test for climate

sensitivity analysis. For example, the oxygen isotopes in speleothems could represent the precipitation amount, changes in seasonality, or changes in source region of moisture. A clear understanding of the oxygen isotopes and the variables mentioned above need a better corroboration. Furthermore, modelers also asked questions to resolve the sources for carbon dioxide increase during the Antarctic warming events, and what factors attribute to the deep ocean warming during Heinrich events.

Recommendations

Many meeting participants agreed that more high quality paleo-records with improved temporal resolution, as well as "zero" uncertainty dating, are required for state-of-the-art model-data comparison studies. The presenters further stressed the urgent need to formulate strategic plans to expand on the excellent data sets already available from the last glacial-interglacial cycle and take on new challenges to contribute to efforts predicting climate changes in a warmer world, as undertaken by the Intergovernmental Panel on Climate Change.

To contribute to climate change prediction efforts, it is important to understand the mechanisms of the Holocene (0 to 11.6 ka) transient climate events such as those 5.2 and 4.2 ka ago. These events are found mainly in low latitude climate archives related to hydrological history and are contemporaneous with the disruption of civilizations on three different continents. Most of the participants also agreed that given that more than half of humanity lives in the tropical belt, any changes in regional hydrological cycles cannot be overemphasized. Therefore, focused research needs to be conducted to understand the tipping points of the tropical hydrological cycle.

Participants recommended several main areas to improve the approaches for understanding abrupt climate change, including:

(1) Collecting more high quality data and improving coordination of paleoclimate and modeling approaches;

(2) Concentrating on a few key time horizons but using many proxies;

(3) Studying sea-ice proxy biomarker IP25, a fast and powerful feedback in subpolar regions such as the North Atlantic and sub-Antarctic; and

(4) Investigating new proxies such as clumped isotopes, a promising tool to provide an independent temperature proxy.

Drilling recommendations

Drilling sites in the Indian Ocean, both in the southern Indian Ocean facing the EPICA drill site and northern and western Indian Ocean are deemed necessary. Most of the scientists agreed that funding should be focused to search for high sedimentation rate sites especially the sediment drifts which may provide the centennial-millennial-scale resolution paleo-climate records. Sites closer to the mouths of the Ganges-Brahmaputra-Meghna-Irrawaddy rivers are necessary for the reconstruction of the past Indian summer monsoon. Suitable sites in the western margin of the Indian Ocean especially a shallow to deep water transact along the Kenya-Tanzania margin are needed to be explored.

New drilling sites in the southern sectors of the Pacific and Indian Oceans need to be explored. Drilling and subsequent paleo-records from the Chattam Rise and Chilean margin were very valuable but the vast Southern Ocean remains an open area for research.

Field Trip - Laurentide Ice Sheet Margin at LGM, Central Ohio

During the Last Glacial Maximum (LGM) (18-24? ka) Columbus, Ohio was covered by the Scioto Lobe of the Laurentide Ice-Sheet (LIS), which reached the Appalachian Plateau to the east. There it disrupted drainage, formed ice-marginal lakes, end moraines, and ice-contact topography (kames) and outwash terraces (see the Appendix for a graphical identification of these glacial land features, maps of the field trip route with stops, color maps provided by the Ohio Geological Survey --Glacial, Bedrock Geology and Physiographic Regions-- and other related materials). The objective of the half-day field trip was to understand the development of these terrestrial features which were dominated by till plain, end moraines and outwash and ice-contact deposits. We made several stops to examine till and outwash deposits. These gave us opportunity to enhance our understanding of the Quaternary history of the region and helped us to visualize changes beneath the ice and at the ice margin.

Across the glaciated portions of Ohio there are landforms and sediment that record the advance of several ice sheets during the last ice age. Deposits range from ancient river terraces as found in southern Ohio, to end moraine, kames, and kettles scattered across the landscape in northeastern to southwestern Ohio. These ancient deposits record three major advances with one other advance inferred from elevated river terraces and exotic boulders.

In older literature four glacial advances are recognized during the Pleistocene time. However, it is now assumed that many smaller advances and retreats occurred over the same time span. Since relatively little recent work has been done on the terrestrial glacial history covering the four glacial advances defined in the older literature, we used terms often cited in the literature which, in order from oldest to youngest: Nebraskan, Kansan, Illinoian, and Wisconsin.

The Nebraskan glaciation was the first glaciation, and it is unclear when it was first initiated as there are no definite sediments that record this glacial advance (Hansen, 1974). All that is left may suggest an early glaciation as evidenced from the river terraces found at high elevations, as well as exotic boulders.

The next advance, the Kansan, made it all the way to Cincinnati as revealed from glacial sediments. These are the oldest known sediments left by glaciers in Ohio. Again, due to small amount of these sediments that are left, as well as their poor quality not much can be said about this early glaciation other than there was an ice sheet in Ohio during this glacial stage.

The next glacial advance, the Illinoian, occurred \sim 70 ka ago, and sediments of this glaciation are more prominent in Ohio. Morainic drift spans from southwestern Ohio into the northeastern Ohio at the very limit marking this glacial advance.

During the Wisconsin period, the first major advance of the Erie lobe, the LIS made its way to Columbus (Goldthwait, 1965). The next major advance was associated with the spreading of the LIS possibly as far south as Dayton (Goldthwait, 1965). Two of these glacial advancements were followed by the smaller retreat during the interstadials. The third and the most extensive glaciation occurred ~20 ka ago and ended between 10 and 12 ka ago (Goldthwait, 1959, 1965). The third advancement was very extensive and assumed that the LIS extended as far south as the Cincinnati/Richmond area and buried Columbus and Dayton under approximately 3,000 feet of ice (Goldthwait, 1959)!

The advance of these lobes took place between ~24 and 16 ka ago. The Miami lobe was still active 19.5 ka (\pm 400 yrs), while the Scioto lobe remained active up until 18 ka (\pm 400 yrs.). The retreat of the glaciers then began between ~18 ka ago (\pm 400 yrs) and 16.6 ka (\pm 230 yrs), at a rate of about 300ft per year until the ice front had probably reached Toronto (Goldthwait, 1959, 1965). Approximately 14.5 ka there was yet another surge which brought ice into northern Ohio but only into the present day Cleveland area (Goldthwait, 1959). Once this ice left, it never returned to Ohio again!

The glacial ice from Canada probably originated as a sheet of grounded ice approximately 600 ft thick (Goldthwait, 1959), in the region of the present day Lake Erie. This ice sheet behaved like alpine glaciers, or warm based glaciers, as they moved. This means that instead of moving by internal deformation of ice crystals above a frozen base like polar ice, this ice sheet moved as a result of basal shearing along a slushy base. This promoted extensive erosion and is the reason why there are extensive deposits recording this glaciation. At the time spruce forests, similar to those found in northern Canada, probably characterized the periglacial environment in Ohio. The typical creatures such as Mammoths and Mastodons roamed the landscape as well as other Pleistocene mammals. As a result of this glaciation many new landforms were generated and others destroyed. As glaciers advanced they destroyed deposits of past glaciations and filled in valleys with their tills. As they retreated they deposited landforms of their own. These landforms allow for the reconstruction of the ice advance into Ohio.

Glaciers also modified drainage. In one instance it destroyed an ancient river and gave birth to a river we know well today, the Ohio River. Over two million years ago a river formed that stretched from North Carolina, northward through West Virginia through what is now called the New River Gorge (Hansen, 1995), and Kentucky up into Ohio and westward to Illinois where it emptied into an embayment that occupied the present-day Mississippi river. This river is known as the Teays river.

As the earliest glaciation came down, whether it be the Nebraskan, or Kansan cannot be determined, but early glacial ice dammed the waters of the Teays river to the north forming a huge lake in south-eastern Ohio, north-eastern Kentucky, and western West Virginia. The waters continued to rise to a depth of at least 900ft encompassing an area of approximately 7,000 square miles, slightly smaller than the present day Lake Erie (Hansen, 1995).

The ice lead to the formation of a variety of other lakes such as the Great Lakes. It is believed that the great lakes formed when ice-dammed water was draining during the glacial retreat, but was eventually trapped due to isostatic uplift of the crust as the weight of the ice was removed by melting.

Professor Garry McKenzie of the School of Earth Sciences and Harunur Rashid, Byrd Polar Research Institute, The Ohio State University, lead the field trip.

Conference support

Support for the conference was augmented by the contribution from the National Science Foundation, Climate, Water and Carbon Program and Office of the Research of the Ohio State University in addition to the support from the Ocean Leadership. As a result, we were able to provide travel support to all the participating graduate students, postdoctoral researchers and a few young investigators. We were also able provide travel support to most of the invited speakers.

Conveners:

Harunur Rashid, Byrd Polar Research Center, Ohio State University, OH.Lonnie Thompson, Byrd Polar Research Center, Ohio State University, OH.Leonid Polyak, Byrd Polar Research Center, Ohio State University, OH.

List of invited speakers who spoke in the conference:

Richard Alley, Penn State University Robert F. Anderson, LDEO/Columbia University Henning Bauch. Oregon State University Ed Boyle, Massachusetts Institute of Technology Tom Delworth, GFDL/Princeton University Roger Francois, University of British Columbia Benjamin Flower, University of South Florida Konrad Hughen, Woods Hole Oceanographic Institution Kenji Kawamura, National Institute of Polar Research, JAPAN Peter deMenocal, LDEO/Columbia University Shawn Marshall, University of Calgary, CANADA Bette Otto-Bliesner, National Center for Atmospheric Research (NCAR), Boulder Jonathon Overpeck, The University of Arizona Katharina Pahnke, University of Hawaii Thomas Marchitto, University of Colorado, Boulder Aradhna Tripati, Cambridge University Jeff Severinghaus, Scripps Institute of Oceanography, San Diego Jean-Lynch Stieglitz, Georgia Institute of Technology, Atlanta Lowell Stott, University of Southern California, Los Angeles Harvey Weiss, Yale University Antje Voelker, INETI, PORTUGAL

Program Committee

- Henning Bauch, IFM-GEOMAR, Bremen, GERMANY
- Claire Waelbroeck, LSCE-CNRS, Paris, FRANCE
- Valerie Masson-Delmotte, IPSL/CEA-CNRS, Paris, FRANCE
- Larry Edwards, University of Minnesota, Minneapolis
- <u>Ian Hall</u>, School of Earth Sciences, Cardiff University, UK
- <u>Ian Howat</u>, School of Earth Sciences/Byrd Polar Research Center, Columbus
- Konrad Hughen, Marine Chemistry and Geochemistry, WHOI
- <u>Tom Marchitto</u>, Department of Geological Sciences/INSTAAR, U. Colorado, USA
- Antje Voelker, INETI, PORTUGAL

Media coverage:

A good numbers of local as well as national both print and on-line media covered the conference. The AGU brought their entire media crew for a pilot project as a result a good number eminent scientist were able to be interviewed on the conference venue. These video clips will be available on the YOUTUBE and the copyright for the video belongs to the AGU media and publications department. We have also written an EOS meeting a report which can also be consulted from the AGU website.

List of attendees and their full contact address

The list of participants who attended the Chapman conference on Abrupt Climate Change is given below. This list provides the attendant who registered before the start of the conference. Twenty three (23) participants registered onsite but apparently the AGU is unable to provide the list of those attendees for this report.

Chapman conference on Abrupt Climate Change-Report 2010

AGU Chapman Conference on Abrupt Climate Change 15-19 June 2009 ♦ The Ohio State University Columbus, Ohio, USA

Registration List

Paul Aharon

University of Alabama Dept Geological Sciences Box 870338 Tuscaloosa, AL 35487-0338 paharon@geo.ua.edu

Jinho Ahn Oregon State University Dept of Geosciences 104 Wilkerson Hall Corvallis, OR 97331-5506 jinhoahn@gmail.com

Richard Alley Pennsylvania State University Dept Geosci & Earth Env. Syst. 517 Deike Bldg University Park, PA 16802-0000 rba6@psu.edu

Robert Anderson Lamont-Doherty Earth Obs. POB 1000 Palisades, NY 10964-0000 boba@ldeo.columbia.edu

Patrick Applegate Penn State Geosciences 532 Deike Bldg. University Park, PA 16802-0000 papplegate@psu.edu

Eleanor Bash University of Calgary Department of Geography 2500 University Dr NW Calgary, AB T2N1N4 Canada eleanor.bash@gmail.com

Henning Bauch Mainz Academy/IFM-GEOMAR Wischhofstrasse 1-3 Kiel, 24148 Germany hbauch@ifm-geomar.de

Mark Besonen University of Massachusetts 611 North Pleasant Street 233 Morrill Science Center Amherst, MA 01003-5820 besonen@geo.umass.edu Ronny Boch Univ. of Innsbruck, Austria Institut flr Geologie Innrain 52 Bruno-Sander-Haus Innsbruck 6020 Austria Ronny.Boch@uibk.ac.at

M B E Boslough Sandia Labs 998 Lynx Loop NE Albuquerque, NM 87122-1314 mbboslo@sandia.gov

Raymond Bradley University of Massachusetts Dept Geosci Morrill Sci Ctr 611 N Pleasant St Amherst, MA 01003-9297 rbradley@geo.umass.edu

Chad Briggs Lehigh University Environmental Initiative 31 Williams Drive Bethlehem, PA 18015-0000 chad.briggs@lehigh.edu

Sean Bryan University of Colorado University of Colorado Boulder Campus Box 450 Boulder, CO 80309-0450 sean.bryan@colorado.edu

Min-Te Chen National Taiwan Ocean Univ Inst Applied Geosciences 2 Pei-Ning Road Keelung 20224 Taiwan mtchen@mail.ntou.edu.tw

James Crampton GNS Science PO Box 30368 Lower Hutt 5040 New Zealand j.crampton@gns.cri.nz

Kevin Crawford The Ohio State University 1220 Chambers Road Apt 414c Columbus, OH 43212-0000 crawford.357@osu.edu

- 1 -

Ricardo De Pol-Holz Woods Hole Oceanographic Inst. Earth System Sciences B321 Croul Hall Irvine, CA 92697-0000 rdepolho@uci.edu

Thomas Delworth GFDL/NOAA Princeton Univ POB 308 Geophysics Dynamics Princeton, NJ 08542-0000 tom.delworth@noaa.gov

Simon Engelhart University of Pennsylvania Hayden Hall 240 South 33rd Street Philadelphia, PA 19104-6316 simoneng@sas.upenn.edu

Alexey Fedorov Yale University Geology & Geophysics 210 Whitney Ave New Haven, CT 06511-0000 alexey.fedorov@yale.edu

Joan Feynman JPL, California Inst of Tech MS 169-506 4800 Oak Grove Dr Pasadena, CA 91109-8099 Joan.Feynman@jpl.nasa.gov

Roberto Filippi Byrd Polar Research Center 1800 Lafayette Apt 12 Columbus, OH 43212-0000 robertofilippi82@gmail.com

Benjamin Flower University of South Florida College Marine Science 140 7th Ave South Saint Petersburg, FL 33701-0000 bflower@marine.usf.edu

Roger Francois UBC, Vancouver Earth & Ocean Sciences 6270 University Blvd Vancouver, BC V6T 1Z4 Canada rfrancois@eos.ubc.ca

Paolo Gabrielli

The Ohio State University Byrd Polar Research Center 1090 Carmack road Columbus, OH 43210-0000 gabrielli.1@osu.edu

Konrad Gajewski

University of Ottawa Dept Geography 60 University Ottawa, ON K1N 6N5 Canada gajewski@uottawa.ca

Eric Galbraith

Princeton University Atmospheric & Oceanic Sciences Sayre Hall, Forrestal Campus Princeton, NJ 08540-0000 egalbrai@princeton.edu

Sarah Gray

University of San Diego Marine Science 5998 Alcala Park San Diego, CA 92110-0000 sgray@sandiego.edu

Eddie Haam Harvard University 24 Oxford Street #402 Cambridge, MA 02138-0000 keh@eecs.harvard.edu

Darrell Hanson

237 Country Club Road Shalimar, FL 32579-0000 oaktreedgh@aol.com

Feng He UW-Madison 401 Eagle Heights Apt K Madison, WI 53705-0000 fenghe@wisc.edu

Sharon Hoffmann University of Michigan 2534 C.C. Little Building 1100 North University Ave. Ann Arbor, MI 48109-0000

sshoffma@umich.edu

Yongsong Huang Brown University Dept Geological Sciences POB 1846 Providence, RI 02912-1846 yongsong_huang@brown.edu

Konrad Hughen

Woods Hole Oceanographic Inst MS 25 360 Woods Hole Rd Woods Hole, MA 02543-0000 khughen@whoi.edu

Kenji Kawamura Natl. Inst. of Polar Res., JPN 10-3 Midorichou Tachikawa Tokyo 190-8518 Japan kawamura@nipr.ac.jp

Andrew Kemp University of Pennsylvania Earth and Environmental Sci 240 South 33rd Street Philadelphia, PA 19104-0000 kempac@sas.upenn.edu

Robert Kopp Princeton University STEP, Woodrow Wilson School 405A Robertson Hall Princeton, NJ 08544-0000 rkopp@princeton.edu

Elisabeth Levac

Bishop's University Environmental Study Geography 2600 College Street Sherbrooke, QC J1M 1Z7 Canada elevac@ubishops.ca

David Lund

Univ of MI-Geological Sciences 2534 C.C. Little Bldg. 1100 N. University Ave. Ann Arbor, MI 48109-1005 dclund@umich.edu

Jean Lynch-Stieglitz

Georgia Tech School Earth & Atmospheric Sci 311 Ferst Drive Atlanta, GA 30332-0340 jean@eas.gatech.edu

Bjoern Machalett

Humboldt-University, Germany Department of Geography Bjoern Machalett Siedlung 16 Schmiedefeld/Rennste 98711 Germany b.machalett@nakula.de

- 2 -

Candace Major

National Science Foundation GEO-OCE, Rm 725 4201 Wilson Blvd Arlington, VA 22230-0000 cmajor@nsf.gov

Thomas Marchitto University of Colorado INSTAAR & Dept Geological Sci Campus Box 450 Boulder, CO 80309-0000 tom.marchitto@colorado.edu

Shawn Marshall University of Calgary ES 356 2500 University Dr NW Calgary, AB T2N 1N4 Canada shawn.marshall@ucalgary.ca

Katrin Meissner University of Victoria SEOS PO Box 3055 Stn CSC Victoria, BC V8W 3P6 Canada katrin@ocean.seos.uvic.ca

Joe Melton University of Victoria School of Earth and Ocean Sci. SEOS Building 414 PO Box 3055 STN CSC Victoria, BC V8W 3P6 Canada jrmelton@uvic.ca

Gifford Miller

Univ. Colorado, Boulder INSTAAR Boulder, CO 80309-0450 gmiller@colorado.edu

Ann Miller

Marine G. E. O. S. PO Box 2253 Wolfville, NS B4P 2N5 Canada marine.geos@ns.sympatico.ca

Mahyar Mohtadi

MARUM Uni-Bremen Postfach 330440 Bremen 28334 Germany mohtadi@uni-bremen.de

Martin Montes-Hugo

Inst of Marine & Coastal Sci Rutger University 71 Dudley Rd New Brunswick, NJ 08901-8521 montes@marine.rutgers.edu

Carrie Morrill University of Colorado & NOAA 325 Broadway

Code E/CC23 Boulder, CO 80305-3328 carrie.morrill@noaa.gov

Ellen Mosley-Thompson

Ohio State University Byrd Polar Research Center 108 Scott Hall 1090 Carmack Rd Columbus, OH 43210-1090 thompson.4@osu.edu

lan Orland

Univ. of Wisconsin - Madison Geology and Geophysics 1215 W Dayton St Madison, WI 53705-0000 orland@geology.wisc.edu

Anais Orsi

Scripps Inst. of Oceanography SIO Graduate Department-0208 9500 Gilman Drive La Jolla, CA 92093-0208 aorsi@ucsd.edu

Bette Otto-Bliesner NCAR, Boulder CCR/CGD POB 3000 Boulder, CO 80307-3000

ottobli@ucar.edu Katharina Pahnke

University of Hawaii Geology and Geophysics 1680 East-West Rd., POST 719B Honolulu, HI 96822-0000 kpahnke@hawaii.edu

Julie Palais OPP/NSF Natl Sciences Fdn 4201 Wilson Blvd Rm 755 Arlington, VA 22230-0000 jpalais@nsf.gov

Bhawani Paliwal

Jai Narain Vyas University, New Campus Department of Geology Jodhpur, Rajasthan 342005 India paliwalbhawani@yahoo.co.in

Alexander Pastukhov Inst of Biology Komi SC UB RAS R 28 Kommunisticheskaya Str Komi Republic Syktyvkar 167982 Russia alpast@mail.ru

Genevieve Patton

University of Chicago Geosphysical Sciences 5734 S. Ellis Ave. Chicago, IL 60637-0000 gpatton@uchicago.edu

Henry Pollack University of Michigan Dept Geological Science 2534 C C Little Bldg Ann Arbor, MI 48109-1005 hpollack@umich.edu

Leonid Polyak Byrd Polar Research Center 108 Scott Hall 1090 Carmack Rd Columbus, OH 43210-1002 polyak.1@osu.edu

Terrence Quinn

Jackson School of Geosciences University of Texas Institute for Geophysics 10100 Burnet Rd. Bldg 196-ROC Austin, TX 78759-8500 quinn@ig.utexas.edu

Harunur Rashid

The Ohio State University 108 Scott Hall 1090 Carmack Road Columbus, OH 43210-1002 rashid.29@osu.edu

Bob Raynolds Denver Museum of Nature & Sci 12384 Oxford Road Longmont, CO 80504-0000 bobraynolds@yahoo.com

Jose Rial

Univ North Carolina Dept Geology CB #3315 Mitchell Hall Chapel Hill, NC 27599-0000 jose_rial@unc.edu

Angela Robertson

Earth Sciences 723 W. Michigan St #SL118 Indianapolis, IN 46202-0000 akrobert@iupui.edu

James Russell Brown University 324 Brook St Box 1846 Providence, RI 02912-0000 James_Russell@Brown.edu

Alexander Ruzmaikin JPL, California Institute of Tech MS 169-506 Pasadena, CA 91109-0000 Alexander.Ruzmaikin@jpl.nasa.gov

Jeffrey Severinghaus Scripps Oceanography 260 East Cliff St Solana Beach, CA 92075 jseveringhaus@ucsd.edu

Liang-Jian Shiau Institute of Applied Geosciences 2, Pei-Ning Rd. Keelung 202 Taiwan paleoshiau@gmail.com

Mary Smith Ohio State University 6048 Trafalgar Lane Dublin, OH 43016-0000 smith.5268@buckeyemail.osu.edu

Robert Spielhagen Acad.Sci.Mainz/IFM-GEOMAR Wischhofstr 1-3 Geb 4 Kiel 24148 Germany rspielhagen@ifm-geomar.de

Lev Tarasoff Memorial U. of Newfoundland 37 Forbes Ave Guelph, ON N1G1G2 Canada lev@mun.ca

- 3 -

Chapman conference on Abrupt Climate Change-Report 2010

Thomas Tesche

Climate & Atmospheric Research 3479 Reeves Dr Ft Wright, KY 41017-0000 twt@carallc.net

Lonnie Thompson Ohio State University Byrd Polar Research Center 108 Scott Hall 1090 Carmack Rd Columbus, OH 43210-1001 thompson.3@osu.edu

David Thornalley Cardiff University Earth and Ocean Sciences Main Building Park Place Cardiff, CF10 3YE United Kingdom d.thornalley@cantab.net

Oliver Timm IPRC University of Hawaii Intl Pacific Research Ctr 1680 East West Rd. Honolulu, HI 96822-0000 timm@hawaii.edu

Adi Torfstein LDEO, Columbia University

Lamont-Doherty Earth Obsv 61 Rt 9W Comer 221 Palisades, NY 10964-1000 adi.torf@ldeo.columbia.edu

Aradhna Tripati

University of Cambridge Dept Earth Science Downing St Cambridge, CB2 3EQ Great Britain atri02@esc.cam.ac.uk

Antje Voelker Dept. Geologia Marinha - LNEG Dept Geologia Marinha Estrada da Portela, Zambujal Alfragide 2721-866 Portugal avoelker@softhome.net

Amy Wagner CIRES, Univ. of Colorado 325 Broadway Code E/CC23 Boulder, CO 80305-3337 amy.wagner@noaa.gov

Xianfeng Wang University of Minnesota 108 Pillsbury Hall 310 Pillsbury Dr SE Minneapolis, MN 55455-0000 wang0452@umn.edu

Peter Ward

Teton Tectonics P.O. Box 4875 (Mail) 1150 Park View Lane (UPS) Jackson, WY 83001-0000 peward@wyoming.com

Stephen Wathen

University of California Davis 18001 Old Cutler Rd Suite 419 Suite 419 Palmetto Bay, FL 33157-0000 sfwathen@gmail.edu

Harvey Weiss

Yale University 300 Ogden New Haven, CT 06511-0000 harvey.weiss@yale.edu

Jianjun Xu JCSDA WWB, Room 207 5200 Auth Road Camp Springs, MD 20746-0000 jianjun.xu@noaa.gov

+ Soulicin Henici

REFERENCES:

Alley, R. B., and Clark, P. U. 1999. The deglaciation of the Northern Hemisphere: a

global perspective. Annual Review of Earth and Planetary Sciences, 27: 149-182.

- Bond, G. C., W. S. Broecker, S. Johnsen, J. McManus, L. Labeyrie, J. Jouzel, and G. Bonani, 1993: Correlations between climate records from North Atlantic sediments and Greenland ice. *Nature*, 365, 143-147.
- de Menocal, P., J. Ortiz, T. Guilderson, and M. Sarnthein, 2000: Coherent High- and Low-Latitude Climate Variability During the Holocene Warm Period. *Science*, 288, 2198-2202.
- Goldthwait, R.P., 1959a: Scenes in Ohio During the Last Ice Age; The Ohio Journal of Science, Volume 59, p 193-216

- Goldthwait, R.P., 1965: Pleistocene Deposits of the Erie Lobe; in Wright, H.E. and Frey,D.G., 1965: The Quaternary of the United States; National Academy of Sciences,Princeton University Press, p 85-99.
- Goldthwait, R. P., and others, 1965, Guidebook for Field Conference G, Great Lakes Ohio River Valley, Richard P. Goldthwait, Conference Organizer, INQUA, VIIth Congress.
- Hansen, M.C. 1995: The Teays River; Geofacts #10, Ohio Department of Natural Resources, November 1995.
- Hansen, M.C., 1995: Ohio's Glaciers; Educational Leaflet #7, Division of Geological Survey, 1974.
- Kageyama, M., J. Mignot, D. Swingedouw, C. Marzin, R. Alkama, and O. Marti, 2009: Glacial climate sensitivity to different states of the Atlantic Meridional Overturning Circulation: results from the IPSL model. *Clim. Past*, 5, 551-570.
- Koutavas, A., J. Lynch-Stieglitz, T. M. Marchitto, and J. P. Sachs, 2002: El Nino-Like Pattern in Ice Age Tropical Pacific Sea Surface Temperature. *Science*, **297**, 226-230.
- Kutzback, J. E. and F. A. Street-Perrot, 1985: Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP. *Nature*, **317**, 130-134.
- Lea, D. W., D. K. Pak, H. J. Spero, 2000: Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. *Science*, 289, 1719-1724.
- Mohtadi, M., A. Lückge, S. Steinke, J. Groeneveld, D. Hebbeln, and N. Westphal, 2010: Late Pleistocene surface and thermocline conditions of the eastern tropical Indian Ocean. *Quat. Sc. Rev.* (*in press*).
- Possehl, G. L., 2002: The Indus Civilization: A contemporary Perspective. Atlamira Press, Lanham.
- Rao, V. P., P. M. Kessarkar, M. Thamban, and S. K. Patil, 2010: Paleoclimatic and diagenetic history of the late Quarternary sediments in a core from the southeastern Arabian Sea: geochemical and magnetic signals. *J. Oceanography*, 66, 133-146.
- Rashid, H., England, E., Thompson, L., and L. Polyak, 2010: Late glacial to Holocene Indian Summer Monsoon variability from the Bay of Bengal sediment records (sub.).
- Rashid, H., B. P. Flower, R. Z. Poore, and T. M. Quinn, 2007: A ~25 ka Indian Ocean monsoon variability record from the Andaman Sea. *Quat. Sci. Rev.*, 26, 2586-2597.

- Rasmussen, S. O. and 16 others, 2006: A new Greenland ice core chronology for the last glacial termination. *J. Geophy. Res.*, **111**, D06102, doi:10.1029/2005JD006079.
- Schulz, H., U. von Rad, and H. Erlenkeuser, 1998: Correlations between Arabian Sea and Greenland climate oscillations of the past 110,000 years. *Nature*, **393**, 54-57.
- Severinghaus, J. P., Beaudette, R., Headly, M. A., Taylor, K., and Brook, E. J. 2009. Oxygen-18 of O₂ Records the Impact of Abrupt Climate Change on the Terrestrial Biosphere. Science, **324**: 1431-1434.
- Sinha, A., K. Cannariato, L. Stott, H.-C. Li, C. F. You, H. Cheng, R. L. Edwards, and I. B. Singh, 2005: Variability of southwest Indian summer monsoon precipitation during the Bølling-Allerød. *Geology*, **33**, 813-816.
- Steinke, S., M. Kienast, J. Groeneveld, L. Lin, M.-T. Chen, and R. Rendle-Bühring,
 2008: Proxy dependence of the temporal pattern of deglacial warming in the tropical
 South China Sea: toward resolving seasonality. *Quat. Sc. Rev.*, 25, 1475-1488.
- Stott, L., C. J. Poulsen, S. P. Lund, and R. C. Thunell, 2002: Super ENSO and Global Climate Oscillations at Millennial Time Scales. *Science*, 297, 222-226.
- Thompson, L. G., T. Yao, M. E. Davis, K. A. Henderson, E. Mosley-Thompson, P.-N. Lin, J. Beer, H.-A. Synal, J. Cole-Dai, J. F. Bolzan, 1997: Tropical Climate Instability: The Last Glacial Cycle from a Qinghai-Tibetan Ice Core. *Science*, 276, 1821-1825.
- Thompson, L., E. Mosley-Thompson, H. Brecher, M. E. Davis, K. Henderson, H.
 Brecher, V. S. Zagorodnov, T. A. Mashiotta, P.-N. Lin, V. N. Mikhalenko, D. R.
 Hardy, and J. Beer, 2002: Kilimanjaro ice core records: evidence of Holocene climate change in Tropical Africa. *Science*, 298, 589-593.
- Thompson, L., E. Mosley-Thompson, H. Brecher, M. E. Davis, B. León, D. Les, P.-N. Lin, T. A. Mashiotta, and K. Mountain, 2006: Abrupt tropical climate change: Past and present. *Proc. Nat. Acad. Sci.*, **103**, 10536-10543.
- Wang, Y., et al. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, **451**: 1090-1093.