Ice sheet, atmosphere, and ocean dynamics in the Atlantic sector of Antarctica – IODP proposals 848 (Weddell Sea) and 902 (Iceberg Alley)

Michael E. Weber (michael.weber@uni-koeln.de),

Thanks to Yasmina Martos, Peter Clark, Xiaoxia Huang, Marga Garcia, Gerrit Lohmann, Rupert Gladstone, Jerry Mitrovica, Gerhard Kuhn, Axel Timmermann, Xiaoxia Huang, Trevor Williams, Nicholas Gollendege, Christopher Fogwill, Wilfried Jokat, James Smith, German Leitchenkov, Claire Allen, Simon Belt, Marcus Gutjahr, Ian Hall, Fernando Bohoyo, Nicholas McCave, Maureen Raymo, Ralph Schneider, Joseph Stoner, Daniela Sprenk,
IODP PROPOSAL 902
Late Neogene reconstruction of ice-sheet, atmosphere, and ocean dynamics in Iceberg Alley
Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation

Iceberg Routing Through Iceberg Alley

- Cores are ideally located for three reasons:
 1. Antarctic Ice-sheet history
 2. East of Drake Passage (ACC)
 3. In the trajectory of Southern Patagonian dust source

Iceberg trajectories after Gladstone et al. (2001)
Stuart & Long (2011)
Highest Mean Iceberg Probability in Iceberg Alley

Iceberg Alley

- Probability of small icebergs (100-m to 3-km long; color coded) and large icebergs (≥ 6 km long, black lines), shown for the years 1993 – 2013. Credits Jean Tournadre (Ifremer).

- Iceberg Alley captures a specially integrated signal of Antarctic ice mass loss.

- Reconstruction past ice-sheet dynamics is this key location has therefore the potential to deliver unprecedented insight into the Antarctic glacial history.
Antarctic Ice-Sheet Discharges & Climate Development

Sprenk et al. (2013, GSL)

Weber et al. (Nature, 2014)

Antarctic Drilling Workshop College Station
M.E. Weber et al.
IODP proposals 848 & 902
Plio-Pleistocene Dust Couplings

Martinez-Garcia et al. (2011; Nature Geo)

- Marine cryogenic dust couplings will be used to constrain the chronology (by wiggle matching) and to study the dust transport history from Patagonia

Weber et al. (2012; QSR)
N-S transect work in the Scotia Sea

McCave et al. (2014, Nature Geo)

- Selected investigation areas in Pirie Basin (Site MD07-3133) and Dove Basin (Site MD07-3134) are in the center of previous, north-south oriented transect work on current speed and sea-ice extent.

Collins et al. (2013, QSR)
Specific Objectives 902-Full: Iceberg Alley

One drilling in Dove Basin and one in Pirie Basin (600-1000 m; with 10 alternate sites) should reconstruct, along a latitudinal transect, the evolution of the AIS through major Late Neogene transitions (Middle Miocene glacial intensification of the EAIS, mid-Pliocene warm interval, Late Pliocene glacial intensification of the WAIS, MPT, warm interglacials of the last 800 kyr, and glacial terminations). Major topics are:

- Establish the time frame with bio-, magneto-, and tephrostratigraphy, stable isotopes, paleointensity, and dust tuning
- Variability in and sources of AIS mass loss
- Relationship between AIS mass loss and global sea level
- Linkages between climate and AIS events and their interhemispheric phasing
- Effects of water-mass changes and ocean thermal forcing on ice-mass loss
- Dust-climate couplings and dust sources, as well as potential effect on iron fertilization and glacial CO2 drawdown
- Glacial-to-interglacial changes in the frontal systems and associated sea-ice shifts and the carbon cycle
- Changes in sea-ice extent and interaction with the Antarctic Circumpolar Current and the Southern Hemisphere westerlies
- Paleoceanographic changes of the Drake Passage and thermal isolation of Antarctica
- Paleoceanographic evolution of the ACC and Weddell Sea Bottom Water recorded by the five seismic units